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with finite spectral data.
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Summary. Tie problem of reconstructing the density of a vibrating string given

the first N eigenfrequencies for two vibrating configurations aamits an infinite
number of solutions. Among all such strings compatible with the truncated data
set, we define the ideal string to be that string for which a weighted average
of the density is minimum. We prove that this ideal string must have a finite
number of degrees of freedom and hence, that it is made up by a finite number

of concentrated point masses. By specializing the optimality criterion, we can

also show that the Krein string is an ideal string.
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1. Introduction.

This paper is concerned with the solution of inverse eigenvalue problems
fo.: which the data sets are insufficient for insuring unique solutions. This
situation‘is typical of most inverse eigenvalue problems arising in Geophysics.

A very appealing approach to certain inverse problems with partial data
sets was pioneered by Parker (1374, 1975). His original work dealt with inverse
problems associated with the reconstruction of a buried body embedded in a known
matrix from surface gravity anomaly data. Confronted with the inherent nonunique-
ness of the problem, he decided to construct that particular body which was (i)
capable of explaining the data and (ii) had the least possible maximum density.
Parker called this unique body the ideal body. Thus, out of a set of many possible
solutions, he singled out a particular one by means of an extremum criterion. This
procedure yielded rigorous bounds for the entire class of solutions.

A similar approach has also proved very successful is studying certain
turbulent flows (Howard 1963, 1972, Busse 1969). There the problem stems from
the fact that the Navier-Stokes equations admit a multiplicity of solutions.

Out of this class of solutions, a distinguished one is selected by means of an
optimality criterion. This optimum solution can then yield general results, e.g.
bounds on all solutions.

The present paper attempts tc approach the simplest inverse normal modes
problem, namely that for a vibrating string, from the same point of view. The
data, wnich consist of truncated frequency spectra, cannot guarantee a unique
solution to the inverse problem. Among the set of strings which have the same

given elgenfrequencies, we shall select ar ideal string. As a selection criterion,

S
we shall minimize a weighted average of the density. We shall prove that this
ideal string has a finite number of degrees of freedom and hence, is made up of

concentrated point masses joined by weightless threads,

8§ 06 07 o114
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The particular features of the ideal string can be found by solving a
convex programming problem. Sabatier (1977a,b) was the first to point out the
relationship between Parker's ideal body theory and the classical theory of
linear programming. A similar relatiorship exists here. For a special ideality
criterion, the solution to this programming problem can be trivially obtained.

This special case is discussed at the end of the paper.




2. The extremum criterion for the ideal string.

The vibrating system of interest consists of a string of (dimensionless)

density p(x), of unit length and taut by a unit tension. Two vibrating configu-

rations will be used, differing from each other by the fastening at the left end.

The corresponding eigenvalue problems will be written thus:

: )

'
u + Anp u, = 0 ,

"
o
-
—~

un(O) cosa - u;(o) sina (2.1)

un(l) cosy + ur"(l) siny

L}
o
~—

~d

[¥]
Yn + HpP Vp = 0 ’

vn(o) cosf - v;(o) sinB=0 , \ (2.2)

vn(l) cosy + u;(l) siny =0 . J

a,B,Y are parameters such that
0gac<B<gm/2.
As a result the system represented by (2.1) is stiffer than that associated with

(2.2) and the eigenfrequencies interlace as follows:

uy < ll < o oo < An < oo (2.3)
it Is preferable to write (2.1) and (2.2) as integral equations, viz.
i
5,0 =3, | 0@ 668 u @) (2.4)
and
1
v (x) =y jo p() T(x,E) v, (E)dE (2.5)
where




{(1-E)cosy + siny}{xcosa + sina}

- 1 x < E
G(x, €) cosacosy + sin(a+y) (2.6)

{(1-x)cosy + siny}{Ecosa + sina}
x> §
and T(x,E) is obtained by replacing a by B in the above formula.

Given p(x), (2.4) and (2.5) can be Tooked upon as recipies for calculating
the corresponding eigenvalues ln and Mo For brevity, we denote the result of
these calculations by the notations An[p] and un[o] which emphasize that Xn and
u, are functionals of p(x).

it is well known (Borg 1346), that the complete A and u spectra are necessary
(and sufficient) for the unique dete-mination of p(x). Therefore, if we are only
given the truncated spectra {Xn}? and {un}T we cannot infer p(x) uniquely: there
are infinitely many strings with the first N natural frequencies. Let us denote
the set of these strings by RN’ i.e.

Ry = {o(x); o(x)20, A [p] = A, u o] =u , m=1, 2, . . . N} (2.7)

Next, we define a weighted average of p(x), viz.

1
Mp] = So f(x) p(x) dx , (2.8)

where f(x) is a positive, continuously differentiable function of our own choosing.
The only other condition which we shall place on f(x) is that:
f(1) cosy + £ (1) siny = 1 . (2.9)
For instance, if vy = 0, we can take f(x) to be equal to xk, in which case
M[p] would correspond to the k-th moment of the density distribution.
We can now state the extremum criterion which will define the ideal
string. From among «ll1 the strings In Ry the ideal string p(x) is that string

for which the weighted average M is a minimum.




3. Structure of the ideal string.

In order to find the density B(x) of the ideal string we must solve the
following rather atypical problem in the calculus of variations.

]

Minimize M[p] = S f(x) p(x)dx (3.1)
0
subject to the equality constraints
Aol =2
(h=1,2, .. .N) (3.2)
uylel =

and to the inequality constraint

p(x) > 0. (3.3)
In order to transform this optimization problem into a more standard form,
we shall first prove that the ideal strimg must be made up of a finite number J
of concentrated point masses, i.e. that

A J
p(x) -.Z'mj 6(x-xj) (3.4)
J-

The proof is of the reductio ad absurdum type. Namely, if R ® denotes the subset

N

of RN which is made up of all the strings with an infinite number of eigenfre-
quencies;fthen we shall assume that the ideal string is in that subset, i.e.

B (x)eRy (3.5)

and then sce that this assumption least to a contradiction.

We start by writing
plx) = [r()1% (3.6)
thus satisfying the inequality constraint (3.3). Since ?z(x)eRNQ, we can soive
(2.4) and (2.5) and construct the set of functions {Qn(x)}T defined as follows:

1'No'.'e that this class of strings is not equivalent to the class pel,(0,1).
Indeed, even though p-l+m6(x-§)/L,(O.l). it has an infinite number of eigenfrequencies.
A rigorous treatment of this point would require the use of Stieltjes integrals.




A
Wypey ) = 6 (0017

) , n=1,2, ... (3.7)
Wy (0 = Lu (0]

This set of squares of tha eigenfunctions is complete (8org 1949, p. 61, Levitan
1952,1964). This result is closely related to the theorem regarding the uniqueness

of the solution of the inverse Sturm-Liouville problem, Heuristically, this result

can be understood as follows. Consider two strings p(x) and p(x) + 8p(x),

where 8p is a small density variation. The corresponding eigenvalues differ by

' 2
SO 8o (x) u (x)dx
) = - (3.8a)

n
! 2
S o(x) un(x)dx
0

and

1 2. .
S 50 (x) v2 (x)dx
Su_ = - 2 , (3.8b)

j o(x) v:(x)dx
0

respectively. [f it were possible to find a §p(x)#0, which is orthogonal to all

the functions {Vn(x)}|°, then these two strings would have the same \ and u spectra.

But this is not possible on account of Borg's theorem (Borg 1946). Hence the
funct ions {Hn(x)}‘“, and in particular {Qn(x)}l“, form a base.

Unfortunately, the base thus formed is not orthonormal. This is a minor
nuisance since 2 second base, bi-orthogonal to the first is usuvally required. We

A ®
denote this base by {Qn(x)}' and adopt the normalization
1 A A
L Hm(x)ﬂn(x)dx - Gm , (3.9)

where Gmn Is the standard Kronecker delta. The actual construction of the

A
functions Qn(x) can be carried out by means of a GramSchmidt !ike procedure.




Let us consider next a string [?(x) + 6r(x)]2 wnich is in RN’ i.e. @
nearly ideal string. As can be seen from (3.8), the fact that this string is

A
in RN implies that Yor is orthrogonal to the functions Vn(x) forns= i, 2, ..., 2N.

Consequently,
A pus A
rér = J a 0 (x) (3.10)
nn
n=2N+1

where the coefficients {an} are arbitrary. Consequently, the variation in the

we ighted mean, viz.

! A
M = 2 J‘ f(x) r 8r dx , (3.11)
0
can be written thus:
@ | A
M=2 ] a J f(x)2 (x)dx . (3.12)
2N+l " 0

A
Now, since p(x) is the ideal string, this variation must vanish for all an's.

This requires that

]
j FIR (x)dx =0  ne=2N+l, . .. (3.13)
0

and therefore the function f(x) admits the following finite series representation:

2N A
flx) = ] f W (x) . (3.14)
n=1
By means of simple manipulations, we can also write
2N .
f(x)cosy+f’ (x)siny = Z'fn[cn(x)cosy*cn(x)slny] . (3.15)
m

Now, recalling condition 2.9) we can see that near x = 1, the left hand side of
the above equation is a function nearly equal to |, whereas on account of the
boundary condition at x = 1, the right hand side represents a function nearly
equal to 0. More specifically, we can always find an interval, say (1-¢,1),
over which (3.15) is false. We have reached a contradiction which implies that
s(x) is not In RNQ. Consequently S(x) must have a finite number of degrees cf

freedom and hence be of the form (3.4).



By making use of this knowledge about the structure of the ideal string,
we can transform the original problem (3.1) - (3.3) into a programming problem. (
Indeed, by replacing (3.4) into (3.1) - (3.3), we can state the new problem :s

follows:

J
Minimize M= ] f(x,})m, (3.15)
e 40

subject to the equality constraints

G
n

|
det (G..m., - 5,.) =0,
e ( 'JmJ r; )

ne=1,2, ..., N (3.16)

z det(T,.m,
n B

=~
)

ard the: inequality constraints

0= Xy < < <o oo <y =1,

(3.17)

In (3.16)

G,, = G(xi, xj)

ij

= T
r F‘x;, xj)

ij
and ''det" stands for determinant. Even though it is not possible to write the
solution of (3.15) - (3.17) for a general function f(x) and general spectral data,

much is known about such problems (see e.g. Gass 1969).




h. A special case: the Krein string

If the function f(x) is chosen as follows:
f(x) = %-(xcosB + sing)? (4.1)
where € is determined by means of (2.9), viz.
¢ = (cosB+sinB) (cosBcosy+sinBcosy: 2cosBsiny) |, (4.2)
then the convex programming probiem (3.15) - (3.17) can be solved very easily.

Note that for this case, the ideal string minimize a linear combina~ion of the

mass HO and the first and second moments Hl and "2' indeed,

M[p] = %-(H2c0528+2H]sinBcosB+HosinZB) . (4.3)

it is possible to express this combination of MO’ H] and Hz in terms of

the given eigenvalues, viz.

2 . 2, - cosfeosy+sin(B+y)
Hzcos B+2H]sinBcosB+MOS|n g = sin(B~a) cosacosyrsTniary]

) — (b.4)
n=1 ' u

H (l-ﬁ'l)ﬂ'(l-x!‘-)

k=] k ks k

where the prime indicates that the term k = n is omitied. This formula, which
is derived 'n the appendix, generalizes t+2 formula for HO first given by Krein
(1951, 1952)."

Returning to the ideal string, we can chow that the number of degrees
of freedom ov this string is equal to N. Indeed, if it were made up of J>N

point masses, then it would have J eigenfrequencies {An}lJ and {un} J, and

+Krein's formula is obtained by settinga =y = 0 and 8 = n/2.

|
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J J
M{ I m 6{x=x.)] = Q] ! (h.5)
j=1 J J n=l J ) J )
Mo ‘T-I NI T_T (1- 2 )
i X
o] "k i k

where Q is a constant related to a, B and yv. Recalling that the u and ) eigen-

values interlace, it is easy to see that all the terms .. the above sum are

positive. Consequently,
J N Pn
H[‘l mj 6(x-xj)] >Q Z " - ’
j=1 n=| y y
u ’ .
n (1- Ifl’ ]-—[ (- )
k=1 k k=) k
where
J
Py ™ - ' n . (4.6)
ket (17 7npy Y= gy )

On account of the ordering of the eigenvalues Mo and An’ it is obvious that

P> 1. (4.7)

As a result
N 1
M Z m, G(x-xi')] . (h.8)

i=]

J
"[jZI ™ G(x-xj)] >

In other words, given the truncated spectra {Xn}¥ arJ {un}?. the minimum of

H2 c0528 + ZH' sinBcosB + M sin28 is reached for a string with N-degrees of

0

freedom. Since there is only one such string in R, ,, this ideal string is

N'

For the case 2 = y = 0, B = /2 this string is none other
N

than the Krrin string obtained by writing the rational fraction ' I (- z/ln)/

uniquely determined.

(i- z/un) as a Stieltjes continued fraction, namely n=l




N
ﬂ' (W =2/) %+
("2711") -mZ+ 1

n=1

. (4.9)

where 2.] = x,

i+1 %"
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Appendix

A generalization of Krein's formula.

We shall be concerned with a string of density p(x) vibrating in two

different configurations. The eigenvalue probiem for the first configuration
is:

ha |
4n + Anpun a 0

un(o)cosa - un’(o)sina = 0 (A.1)
un(l)cosy + un’(l)sinY =0

whereas the second is

v, + unpvn = 0

vnIO)cosB - vn’(O)slnB = 0 (A.2)

vn(l)cosy + vn’(l)siny = 0

Just as in the body of the paper, we can assume without loss of generality

that 0 < a < B 5'-% . Bs a result, system (A.1) is stiffer than system {A.2)

and
U'<)\'<"' (un<)‘n<... (A.3)

In order to solve (A.1) and (A.2), we introduce two fundamental solutions

yl(x;l) and yz(x;l) of the equation

y + oy =0 (A.4)
such that
v,(l;l) = -siny ,
(A.5)
Y, (151) = cosy
and
yz(l;l) = -cosy ,
(A.6)

¥y  (133) = -siny .
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In view of the linear independence of these solutions and of the
conditions (A.5), (A.6) we can write
¥y (A v,  (x30) = vy (x352) v 7 (x52) = 1. (A.7)
It is convenient to introduce two pairs of auxiliary variables, namely

U(x;\) = cosa y'(x;k) - sina y"(x;x)

(A.8)
V(x;1) = cosB y‘(x;l) - sinB YI’(x;l)

and
d(x;1) = cosa yz(x;k) - sina yz’(x;l)

(A.9)
¥(x;1) = cosB y,(x;1) - sinB y,” (x;})

Several remarks are now in order. First of all, for x = 0 the zeros of
U »nd V are the eigenvalues of (A.1) and (A.2). Consequently, in view of the
fact that U(0,X) & V(0,\) are entire functions of X of order 1/2 (Titchmarsh

1962), we can write

woy =u,0 [T - 2y
n=1 n

(A.10)

e

v(0,1) = v(0,0) -I-T (- i§£ )

n=1 n

Next, we should point out that the Wronskian equality (A.7) can be written in
terms of the new variables as follows:
| U(x;A) ¥(x;A) = V(x:X) &(x;1) = sin(a=B) . (A.11)

Let us now consider the function

v(0;0) ¥(0;2) - ¥(0;0) v(0;2)

Fz:2) = Z(2-1) v(0;2)

(A.12)

This is ameromorphic function with simple poles at Z = X and Z = un(n-l,z,...) but

not at Z= 0. If A is acircle in the Z-plane of radius (2] = A, then it is

poss!ble to show that
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1

1 j‘ _
T F(2:)) dZ
n

2im
. =0 (A.13)

Making use of the calculus of residues, we can rewrite (A.13) thus:

v (0;0) ¥(0;)) - ¥(0;0)V(0;}) _ °Z° vV(0;0) ¥(051,) - ¥(0;0)V(0;up)
AV(0;A) ?

n=} aV
un(un ) k)Y z‘un

Several simplifications are possible. In particular, since V(O;un) = (0, we can

exploit (A.11) to write W(O;un) in terms of U(O;un); also we can use (A.10) to

evaluate 3V(0,1)/9)A. Therefore

V(0;0) ¥(0;1) - ¥(0/0)V(0;)) _ ¢ sin(a=B)
X V(0;1) = Z‘ —(L‘Tstljno?o

n=

1
(u-)‘)m’_un& _Hn
AT o u—k’ﬂ” T
k] k=]

So "ar, we have just repeated the various steps in the proof of the Mittag-Leffler

theorem (Whittaker & Watson 1952). We now let A = 0. The above formuia becomes:

u{0;0) Lim %. { v(0;0)¥(0;)) - ¥(0;0)v(0;)) }

v{0: A+0
= sin(a-8) | — L (A.14)
nm| [) u u
u n n
(1- —) (- )
" k=1 o H T

We shall now see that the left hand side can be expressed in terms of the mass
and first two moments of the density distribution. To that effect, let us
expand yi(x;A) in powers of A and compute the first two terms by substituting
in (A.1) ¢ (A.2). Omitting the intermediary calculations, we get

y'(o;k) = -cosy-slny+l[(Hl-Hz)cosy+H'siny] + ...
(A.15)
y]’(O;A) = cosy+ A[-(Mo-ﬂl)cosy-nosiny] + ...
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and

¥,(0;1) = siny-cosy+A[- (M -M,)siny+M,cosy] + . . .

(A.16)
yz’(o;z) = siny+k[Mo-Ml)siny-Hocosyl + ...
Replacing these expressions in (A.8), (A.9) we deduce that
V(0;1) = -[cosBecosy + sin(B+y)]
+ 1[(Hl-n2,5osBcosY + H'cosBsinY
+ (MO-H])sinBcosY + MosinBsinyl + ... (A.17)
and
¥(0;1) = [cosBsiny - cos(B+y)]
+ A[-(M‘-Hz)cosesiny + H]cosBcosy
- (MO-H‘)sinBsiny + MosinBcosyl ... (A.18)
and consequently
iiﬁ 11_{v(o;o)‘1'(o;)<) - ¥(0;0)V(0;1)} = (H'-Hz)coszﬁ
- H](cosB+sinB)c058 + (Mo-Hl)sinBcosB
- Mo(cosB+sinB)sin8
As a result (A.14) reads:
zgzgzg:z::;:ggzzg (Mzcoszs + 2M,sinBcosB + MosinzB) =
sin(B8-a) E - . - (A.19)
" T e =TT o- 3
kel K feml k
For a=0, B=n/2 and y=0, the formula reduces to
Moo= T . (A.20)

0 b ®
n=| ’ U U
o 7 -2 TT - 2
k»} k ksl k

which is the formula given by Krein (1952).




